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Abstract

The objectives of the present study are to investigate the unsteady two-dimensional laminar flow of a viscous in-
compressible electrically conducting polar fluid via a porous medium past a semi-infinite vertical porous moving plate in
the presence of a transverse magnetic field. The plate moves with a constant velocity in the longitudinal direction, and
the free stream velocity follows an exponentially increasing or decreasing small perturbation law. A uniform magnetic
field acts perpendicularly to the porous surface which absorbs the polar fluid with a suction velocity varying with time.
The effects of material parameters on the velocity and temperature fields across the boundary layer are investigated. The
method of solution can be applied for small perturbation approximation. Numerical results of velocity distribution of
polar fluids are compared with the corresponding flow problems for a Newtonian fluid. For a constant plate moving
velocity with the given magnetic and permeability parameters, and Prandtl and Grashof numbers, the effect of in-
creasing values of suction velocity parameter results in an increasing surface skin friction. It is also observed that the
surface skin friction decreases by increasing the plate moving velocity. © 2001 Published by Elsevier Science Ltd.

1. Introduction

The study of flow and heat transfer for an electrically
conducting polar fluid past a porous plate under the
influence of a magnetic field has attracted the interest of
many investigators in view of its applications in many
engineering problems such as magnetohydrodynamic
(MHD) generator, plasma studies, nuclear reactors, oil
exploration, geothermal energy extractions and the
boundary layer control in the field of aerodynamics [1].
Polar fluids are fluids with microstructure belonging to a
class of fluids with non-symmetrical stress tensor.
Physically, they represent fluids consisting of randomly
oriented particles suspended in a viscous medium [2-4].
A great number of Darcian porous MHD studies have
been carried out examining the effects of magnetic field
on hydrodynamic flow without heat transfer in various
configurations, e.g., in channels and past plates and
wedges, etc. [5,6].
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Gribben [7] considered the MHD boundary layer
flow over a semi-infinite plate with an aligned magnetic
field in the presence of a pressure gradient. He has ob-
tained solutions for large and small magnetic Prandtl
numbers using the method of matched asymptotic ex-
pansion. Takhar and Ram [8] studied the effects of Hall
currents on hydromagnetic free convection boundary
layer flow via a porous medium past a plate, using
harmonic analysis. Takhar and Ram [9] also studied the
MHD free porous convection heat transfer of water at
4°C through a porous medium.

Soundalgekar [10] obtained approximate solutions
for the two-dimensional flow of an incompressible, vis-
cous fluid past an infinite porous vertical plate with
constant suction velocity normal to the plate, the dif-
ference between the temperature of the plate and the free
stream is moderately large causing the free convection
currents.

Raptis and Kafousias [11] studied the influence of a
magnetic field upon the steady free convection flow
through a porous medium bounded by an infinite ver-
tical plate with a constant suction velocity, and when the
plate temperature is also constant. Raptis [12] studied
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Nomenclature

suction velocity parameter
magnetic flux density

skin friction coefficient

specific heat at constant pressure
Grashof number

acceleration due to gravity
permeability of the porous medium
thermal conductivity

magnetic field parameter
dimensionless material parameter
Nusselt number

dimensionless exponential index
Prandtl number

temperature

dimensionless time

scale of free stream velocity
components of velocities along and
perpendicular to the plate, respectively
scale of suction velocity

x,y  distances along and perpendicular to the plate,
respectively
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Greek symbols

o fluid thermal diffusivity
p dimensionless viscosity ratio
Br coeflicient of volumetric expansion of the

working fluid

y spin-gradient viscosity

& scalar constant (<1))

a electrical conductivity

o fluid density

A coefficient of gyro-viscosity

I fluid dynamic viscosity

v fluid kinematic viscosity

vy fluid kinematic rotational viscosity
0 dimensionless temperature

w angular velocity vector
Superscripts

! differentiation with respect to y
* dimensional properties
Subscripts

p plate

w wall condition

00 free stream condition

mathematically the case of time-varying two-dimen-
sional natural convective heat transfer of an incom-
pressible, electrically conducting viscous fluid via a
highly porous medium bounded by an infinite vertical
porous plate.

However, most of the previous works assume that the
plate is at rest. In the present work, we consider the case
of a semi-infinite moving porous plate with a constant
velocity in the longitudinal direction when the magnetic
field is imposed transversely to the plate. We also con-
sider the free stream to consist of a mean velocity and
temperature with a superimposed exponentially varia-
tion with time.

In general, the study of Darcian porous MHD is very
complicated. It is necessary to consider in detail the
distribution of velocity and temperature distributions
across the boundary layer, in addition to the surface skin
friction. The present work is an attempt to shed some
light on these issues.

2. Formulation

We consider the two-dimensional unsteady flow of a
laminar, incompressible fluid past a semi-infinite vertical
porous moving plate embedded in a porous medium and
subjected to a transverse magnetic field in the presence
of a pressure gradient. The physical model and geo-
metrical coordinates are shown in Fig. 1. It is assumed

B,

Porous
medium

A
\

Y

Lo

Fig. 1. Physical model and coordinate system of problem.

that there is no applied voltage which implies the ab-
sence of an electric field. The transversely applied mag-
netic field and magnetic Reynolds number are very small
and hence the induced magnetic field is negligible [13].
Viscous and Darcy’s resistance terms are taken into
account with constant permeability of the porous me-
dium. The MHD term is derived from an order-of-
magnitude analysis of the full Navier—Stokes equations.
It is assumed here that the hole size of the porous plate is
significantly larger than a characteristic microscopic
length scale of the porous medium. We regard the po-
rous medium as an assemblage of small identical
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spherical particles fixed in space, following Yamamoto
and Iwamura [14]. Due to the semi-infinite plane surface
assumption, furthermore, the flow variables are func-
tions of y* and ¢* only.

Under these conditions, the governing equations, i.e.,
the mass, momentum and energy conservation equations
can be written in a Cartesian frame of reference, as:

continuity:
ot
o

linear momentum:

ou* ou* 1 op* *u*
* =—— ¢ T-T,
e e = et () (T = 7o)
u* . ow*
Ve 7Bgu +2ray*’
2)
angular momentum:
dw* dw* Fw*

* = 3
pj(aﬁJrv 6y*) 1o (3)
energy:
or or o*T
O L 90 4
o Uy T Ty @

where x* and y* are the dimensional distances longitu-
dinal and perpendicular to the plate, respectively, u*,v*
the components of dimensional velocities along the x*
and y* directions, respectively, p the density and v the
kinematic viscosity, v, the kinematic rotational viscosity,
g the acceleration of gravity, f; the coefficient of volu-
metric thermal expansion of the fluid, K* the perme-
ability of the porous medium, o the electrical
conductivity of the fluid, B, the magnetic induction, j*
the micro-inertia density, w* the component of the
angular velocity vector normal to the xy-plane, y
the spin-gradient viscosity, 7 the temperature, and « is
the effective fluid thermal diffusivity.

The third term on the RHS of the momentum Eq. (2)
denotes buoyancy effects, the fourth is the bulk matrix
linear resistance, i.e., Darcy term, the fifth is the MHD
term. The heat due to viscous dissipation is neglected for
small velocities in Eq. (4). Also, Darcy dissipation term
is neglected because it is of the same order-of-magnitude
as the viscous dissipation term. It is assumed that the
porous plate moves with constant velocity (u;) in the
longitudinal direction, and the free stream velocity (U%)
follows an exponentially increasing or decreasing small
perturbation law. We also assume that the plate tem-
perature (7") and suction velocity (v*) vary exponentially
with time.

Under these assumptions, the appropriate boundary
conditions for the velocity and temperature fields are

w'=uy, T=T,+e&T,—Tx)e"",
dw* Qu*

= — t * = 0 5
o 5z =0 (5)
u — UL =Uy(l +ee""),
T—>T, ® —0asy —oo (6)

in which »* is a scalar constant, and U is a scale of free
stream velocity.

From the continuity equation (1), it is clear that the
suction velocity normal to the plate is a function of time
only and we shall take it in the form:

=—Tp(1+ede""), (7

where A4 is a real positive constant ¢ and ¢4 small less
than unity and ¥} is a scale of suction velocity which has
non-zero positive constant. Outside the boundary layer,
Eq. (2) gives

1 dp*  dU; v a
=—%4 U, +-BU.. 8
pdx* dt*+K* oo+p000 ()
We now introduce the dimensionless variables, as follows:
u* U* be* U; M;
u=— V= — = — o = , ==
o w YT U’ U
v . t—t*VOZ, G—T_T‘X', n_n*v’
UOVO v Tw - T')o V()2
_ K* V()2 ) VZ
- \'2 b ] - vz ] b
C .
Pr= VPk_p —Y s the Prandtl number,
o
By . .
_7 OZV is the magnetic field parameter,
PV
Ty — T) .
G= M is the Grashof number. 9)
N

Furthermore, the spin-gradient viscosity y which gives
some relationship between the coefficients of viscosity
and micro-inertia, is defined as

)= (u+§)/‘*:uﬁ<l+%ﬁ)7 (10)

where f§ denotes the dimensionless viscosity ratio, de-
fined as follows:

A
/?=; (11)

in which A is the coefficient of gyro-viscosity (or vortex
viscosity).

In view of Egs. (7)-(11), the governing equations
(2)—(4) reduce to the following non-dimensional form:

Ou ot Ou _dUyx
3 —(1+ede )6y_ & (+/3) +G0
+N(Ux u)+2ﬂ@, (12)
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0w oo 1%

5—(1+9Ae )a—ﬁa—yz7 (13)
00 00 1 98%

E—(1+5Ae )G_y_ﬁa_yz’ (14)
where

1 W 2
N=(M+= = S —
(rg) ==t
The boundary conditions (5) and (6) are then given by
the following dimensionless form:

Ow *u
- -1 O A Y SRR 1
u="U,, 0 +ee”, 3 I aty=20, (15)
u—U,, 0—-0, w—0 asy— oo (16)

3. Solution

In order to reduce the above system of partial dif-
ferential equations to a system of ordinary differential
equations in dimensionless form, we may represent the
linear and angular velocities and temperature as

u=u(y) +ee"ui(y) + O(e?) + -+ (17)
o = w(y) + ee” w1 (y) + O(e) + - - (18)
0= 00(y) +2€"01(y) + O(&?) + - (19)

Substituting Eqs. (17)-(19) in Eqgs. (12)-(14) and
equating the harmonic and non-harmonic terms, ne-
glecting the coefficient of O(e?), we get the following
pairs of equations for (uy, wy, 0p) and (uy, wy, 0).

(1 + P)ug + uy — Nug = —N — GOy — 2wy, (20)

(1+ B)uy +u} — (N + n)uy

= —(N 4+ n) — Auy — GO, — 2o, (21)
wy +nwy =0, (22)
o} + nw| — nno; = —Anwy, (23)
0y + Prl, = 0, (24)
0] + Pro, — nPr0; = APr0,. (25)

Here primes denote differentiation with respect to y. The
corresponding boundary conditions can be written as:

o = U, = 07 w/ — _u//7 w/ — _u//7

0 P 1 0 0 1 1 (26)
90:1, 9121 aty:0

u():l, ulzl, (1)()—>0, (/01%07 (27)

0p—0, 0, —0 asy— oc.

The solutions of Egs. (20)—(25) with satisfying boundary

conditions (26) and (27) are given by

u(y) =1+ae™ +ae™ +ase™,

w(y)=1+be™ £ bye™™ +bye™™
+ by + bse ™ + bge ™,

wy(y) =cre”™,

o1(y) = cpe™™y — % cre ™,

Oo(y) =™,

A
0, (y) — gy 4 ;pr(e*hz:y _ efl’ry)’
where

Ly 142
n

)

|
hz:m[l+\/1+4N(l+ﬂ)],

h =1

h3:ﬁ[1+\/1+4(N+n)(1+ﬁ)],
Pr 4n
2 (1)

and

alep*I*azflJ;,

G
TR BN
| E—
(I+Pn—n—N""
A 28,
= C,
YR~k — (N +n)
b2:_14_hza|’
n
b 26,
YT (14 B+ (2B — 1)hy — 2k — (N +n)
(143B)h? —hy — (N +n) Iy
X{ 2Bh k2+h1 )
APr 1
by =—G( 1+ ,
! < - n )(1+/3)h421*h4*(N+n)
y. _ APIG 1
>~ n (1+pP2—P—N’
Anas — {253,
bs = n

(L+ B —n—(N+n)’
(I1+Bn—1-{N/n}

(1= B> —n— N +2Bh3

< [(Up = )12 + (PP — )as].

1
C = 7E [kl + blh% + b3h§:|7

Cc1 =

A 2
ke = *TWcl + byhy + bahi + bsPr + ber,

kzz—(1+b2+b4+b5+b(,).
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By virtue of Egs. (17)—(19), we obtain the streamwise
and angular velocities and temperature, as follows:

uly,t) =1+aje ™ +aye™™ +aze™
+ee" [l +bre ™ +bye ™ 4 hye
+bye ™ 4 bse ™™ 4 boe ], (34)

Ay
a)(y, l) = eV + ce™ |:Cz Cih‘y — JC‘] Cimil N (35)
n

A
0(y,1) = ™ 4 ge™ {e”’“’ + ;Pr(e’h“-" — e’P"y)} . (36)

Given the velocity field in the boundary layer, we can
now calculate the skin friction at the wall of the plate,
which is given by

T Ou
Ty = - —
plUohy Oy,
= (1 = Up)hy + (hy — Pr)ay + (hy — n)as
— se"’[b]hl + bzhz + b3h3 + b4h4 + bSPF + b61’]]
(37)
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Fig. 2. Distributions of velocity and temperature profiles of
Newtonian fluid across the boundary layer for a stationary
vertical porous plate in the absence of magnetic field.

10.0 —
5.0
> i
£ J
8 J
T, |
> 0.0
\
1 B \
-5.0 B=0.7
I T I I I
0 1 2 3 4 5 6
(a) Spanwise coordinate, y

We can also calculate the heat transfer coefficient in
terms of the Nusselt number, as follows:

oT /oy*
Nu = xi(]",/,);)w’ (38)
., 00
NuRe = —
Y% =0

— Pr+ee” {éPrz - h4<1 +éPr)}, (39)
n n

where Re, = Vyx/v is the Reynolds number.

4. Results and discussion

The formulation of the effect of magnetic fields and
suction velocity varying exponentially with time about a
non-zero constant mean value on the flow and heat
transfer of an incompressible polar conducting fluid
along a semi-infinite vertical porous moving plate has
been carried out in the preceding sections. This enables
us to carry out the numerical computations for the ve-
locity and temperature for various values of the flow and
material parameters. In the present study the boundary
condition for y — oo is replaced by identical ones at yyax
which is a sufficiently large value of y where the velocity
profile u approaches the relevant free stream velocity.
We choose ym.x = 6 and a step size Ay = 0.001.

The general distributions of velocity and temperature
profiles of Newtonian fluids across the boundary layer
for a stationary porous plate in the case of absence of
magnetic field are shown in Fig. 2.

In Figs. 3-10 we have prepared some graphs of the
velocity and angular velocity profiles for polar fluids
with the fixed flow and material parameters, n,t,4, ¢, M,
K,G,Pr and U, which are listed in the figure captions.
The effect of viscosity ratio § on the velocity and angular
velocity for a stationary porous plate in the absence of
magnetic field is presented in Fig. 3. The numerical re-
sults show that the velocity distribution is lower for a
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1
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8 =
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>
g e=0
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I I I I
3 4 5 6
(b) Spanwise coordinate, y

Fig. 3. Velocity and angular velocity profiles against spanwise coordinate y for different values of viscosity ratio f.
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Fig. 4. Surface angular velocity versus viscosity ratio for
different values of magnetic parameter M.
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Fig. 5. Velocity profiles against spanwise coordinate y for
different values of dimensionless exponential index 7 .

Newtonian fluid (f = 0) with the fixed flow and material
parameters, as compared with a polar fluid when the
viscosity ratio is less than 0.5. When f takes values
larger than 0.5, however, the velocity distribution shows
a decelerating nature near the porous plate. In addition,

] Up=0.5
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> ]
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1 —
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the angular velocity distributions do not show consistent
variations with increment of viscosity ratio parameter.

In order to elucidate these behaviors, we calculate
the surface angular velocity on the stationary porous
plate versus viscosity ratio f for different values of the
magnetic parameter M in Fig. 4, where it is seen that
the critical value of viscosity ratio exists. This value
tends to increase as the magnetic field parameter
increases.

For the case of a stationary porous plate, velocity
profiles against the spanwise coordinate y for different
values of dimensionless exponential index n are shown in
Fig. 5. It is seen that when approaching n» — 0~, the
magnitude of the velocity distribution across the
boundary layer increases, and then decays to the rel-
evant free stream velocity. However, the velocity distri-
bution decreases as the exponential index »n approaches
the n — 07 value.

Fig. 6 illustrates the variation of velocity and angular
velocity distribution across the boundary layer for
various values of the plate velocity U, in the direction of
fluid flow. The peak value of velocity across the
boundary layer decreases near the porous plate as the
plate velocity increases. However, the values of angular
velocity on the porous plate are increased as the plate
velocity increases.

For different values of the magnetic field parameter
M, the velocity and angular velocity profiles are plotted
in Fig. 7. It is obvious that the effect of increasing values
of magnetic field parameter results in a decreasing ve-
locity distribution across the boundary layer. Further-
more, the results show that the values of angular velocity
on the porous plate are decreased as M increases.

Fig. 8 shows the velocity profiles for different values
of the permeability parameter K. Clearly as K increases
the velocity boundary layer tends to decrease, and then
decays to the relevant free stream velocity.

The velocity and angular velocity profiles against
spanwise coordinatey for different values of Grashof
number G are described in Fig. 9. It is observed that an

Fry
)
o
]
>
]
=
=)
c
<
0 1 2 3 4 5 6
(b) Spanwise coordinate, y

Fig. 6. Velocity and angular velocity profiles against spanwise coordinate y for different values of plate moving velocity U,.
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Fig. 8. Velocity profiles against spanwise coordinate y for
different values of permeability K.

increase in G leads to a rise in the values of velocity, but
decreases due to angular velocity. Here the positive
value of G corresponds to a cooling of the surface by
natural convection. In addition, the curves show that the
peak value of velocity increases rapidly near the wall of
the porous plate as the Grashof number increases, and
then decays to the free stream velocity.
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7. Velocity and angular velocity profiles against spanwise coordinate y for different values of magnetic parameter M.

Fig. 10(a) shows the velocity profiles against span-
wise coordinate y for different values of Prandtl number
Pr. The numerical results show that the effect of in-
creasing values of Prandtl number results in a decreasing
velocity, and then approaches a constant value of about
1.3 which is relevant to the free stream velocity at the
edge of boundary layer. The results also reveal that the
peak value of velocity decreases as Pr decreases.

Typical variations of the temperature profiles along
the spanwise coordinate are shown in Fig. 10(b) for
different values of Prandtl number Pr . The numerical
results show that an increase of Prandtl number results
in a decreasing thermal boundary layer thickness and
more uniform temperature distribution across the
boundary layer. The reason is that smaller values of Pr
are equivalent to increasing the thermal conductivities,
and therefore heat is able to diffuse away from the
heated surface more rapidly than for higher values of Pr.
Hence the boundary layer is thicker and the rate of heat
transfer is reduced, for gradients have been reduced.

As shown in Fig. 11, it has been observed that for a
constant suction velocity parameter 4 with given flow
and material parameters, the effect of increasing values
of plate moving velocity U, results in a decreasing

0.0 {77!79,:'2-&, -
1G=0.0
2.0 ~
] G=2.0 £=0.1, =02
-4.0 n=1, t=1
] A=0.5, K=0.5
60 M=2, Pr=1
6.0 Upbs
8.0
-10.0 T T T T T \

0 1 2 3 4 5 6
Spanwise coordinate, y

Fig. 9. Velocity and angular velocity profiles against spanwise coordinate y for different values of Grashof number G.
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Fig. 10. Velocity and temperature profiles against spanwise coordinate y for different values of Prandtl number Pr.
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Fig. 11. Variation of the surface skin friction with the plate
moving velocity U, for various suction velocity parameters 4.
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Fig. 12. Variation of the surface heat transfer with the suction
velocity parameter A for different values of Prandtl number Pr.

surface skin friction on the porous plate. It is difficult to
show clearly the corresponding profiles of surface skin
friction due to very little variation. It is also evident that
for different values of the suction velocity parameter A,
the surface skin friction has zero value near U, = 1.2.
Fig. 12 illustrates the variation of surface heat
transfer with the suction velocity parameter A for sev-

eral values of Prandtl number. Numerical results show
that for given flow and material parameters which are
listed in the figure caption, the surface heat transfer from
the porous plate tends to decrease slightly on increasing
the magnitude of suction velocity.

5. Conclusions

We have examined the governing equations for an
unsteady, incompressible polar fluid past a semi-infinite
porous moving plate whose velocity is maintained at a
constant value, and embedded in a porous medium and
subjected to the presence of a transverse magnetic field.
The method of solution can be applied for small per-
turbation approximation. Numerical results are pre-
sented to illustrate the details of the flow and heat
transfer characteristics and their dependence on the
material parameters. We observe that, when the mag-
netic parameter increases the velocity decreases, whereas
when the permeability parameter or Grashof number
increases the velocity increases.

It is recognized that there are many other methods
that could be considered in order to describe some
reasonable solutions for this particular type of problem.
For a better understanding of the thermal behavior of
this work, however, it may be necessary to perform the
experimental works. In the near future, we would be
glad to compare these theoretical results with those
obtained by anyone in the same field.
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